ABSTRACT
The azo-ligand, 1,5-dimethyl-2-phenyl-4-[(E)-(2,3,4-trihydroxylphenyl) diazenyl]- 1,2-dihydro-3H-pyrazol-3-one (H3L) and its Zn(II) and Cd(II) complexes have been synthesized and characterized based on stoichiometric, molar conductance, electronic and infra-red spectral studies. The results showed that H3L reacted with the metals in 2:1 ratio. H3L coordination was through the hydroxyl, azo and carbonyl groups to form [Zn(H2L)2] 2+ and [Cd(H2L)2] 2+ respectively. Solvent extraction studies on Zn(II) and Cd(II) using 1,5- dimethyl-2-phenyl-4-[(E)-(2,3,4-trihydroxylphenyl) diazenyl]-1,2-dihydro-3H-pyrazol-3-one were carried out with CHCl3. Effects of other extraction variables like, pH, salting-out agent, masking agent and acids were also investigated. Cd(II) was quantitatively extracted in 0.001 M HCl up to 100%; and 0.001 M of either thiocyanate, or 0.001 M tatrate masked Cd(II) up to 90%, under five minutes. Extraction of Zn(II) with H3L/CHCl3 was quantitative in 0.001 M HCl up to 96% under seventy minutes. In the same vein, 1 M cyanide and 1 M thiocyanate masked it up to 79% and 67% respectively. Cd(II) was successfully separated from Zn(II) following four-cycle extraction up to 96.5% in 0.001 M HCl using H3L/CHCl3 in the presence of 1 M cyanide. Recovery of Zn(II) and Cd(II) from rubber carpet was up to 90% and 85% respectively under the established parameters. The extraction constant was established for both Zn(II) and Cd(II) complexes from the results obtained from pH, where the slope was 0.141 and 0.0516, and the extraction constant 7.316 and 3.899 respectively. Hence, H3L is a promising extractant for Zn(II) and Cd(II) ions.